Parameter Estimation
- It refers to the process of using sample data to make inferences or estimates about one or more unknown parameters that characterize a statistical population or probability distribution.
- It is a function defined on the samples taken.
Estimation Error
Estimation error is the difference between an estimated/predicted value and the true/actual value in a statistical or modeling context. It quantifies the accuracy or precision of an estimation method, reflecting how closely the estimate aligns with the real-world value.
- Let \(\theta\) be the parameter and \(\hat{\theta}\) be the estimator.
Error: \(\hat{\theta}(X_1 , X_2 .... X_n) - \theta\) is a random variable.
Bias
Bias refers to the tendency of a statistical estimator to systematically overestimate or underestimate a population parameter.
- Let \(X_1 , X_2 , .... X_n \sim \text{iid } X\) , parameter \(\theta\),
- The bias of the estimator \(\hat{\theta}\) for a parameter \(\theta\) is denoted as
Unbiased Estimator
When Bias/Error is 0 , then the estimator \(\hat{\theta}\) is said to be unbiased estimator.
Risk (Squared Error)
Let \(X_1 , X_2 , .... X_n \sim \text{iid } X\) , parameter \(\theta\)
The squared-error or risk of the estimator \(\hat{\theta}\) for a parameter \(\theta\) is denoted as
- Since \(\text{Error} = \hat{\theta} -\theta\) , risk is the expected value of squared error and is also called the mean squared error (MSE).
- Squared-error risk is the second moment of Error
Variance
Let \(X_1 , X_2 , .... X_n \sim \text{iid} X\) , parameter \(\theta\)
Variance of Estimator:
also variance of error is equal to variance of estimator i.e. \(Var(\hat{\theta}) = Var(Error)\)
Bias Variance Tradeoff
Let \(X_1 , X_2 , .... X_n \sim \text{iid} X\) , parameter \(\theta\)
Sample Moments
Sample Moments: