Skip to content

Central Limit Theorem

Moment Generating Functions

Let \(X\) be a zero-mean random variable. The MGF of \(X\) , denoted \(M_X(\lambda)\), is a function from \(\mathbb{R} \to \mathbb{R}\) defined as

\[M_X(\lambda) = E[e^{\lambda X}]\]

Note

  • When \(X\) is Discrete with PMF \(f_X\)

X takes the values \(\{x_1 , x_2 , x_3 ....\}\)

\[M_X(\lambda) = f_X(x_1)e^{\lambda x_1} + f_X(x_2)e^{\lambda x_2} + ....\]
  • When \(X\) is continuous with PDF \(f_X\) and support \(T_X\)
\[M_{(\lambda)} = \int^{}_{x \in T_X} f_X(x) e^{\lambda x} dx\]

Example

\(\mathbf{X \in \{\overset{1/2}{-1} , \overset{1/4}{0} , \overset{1/4}{2}\}}\)

\[M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25 e^{2 \lambda}\]

\(\newline\)

\(\mathbf{M_X(\lambda) = (1/3)e^{3 \lambda / 2} + (1/6)e^{-3\lambda} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/4}\)

\[X \sim \{\overset{1/6}{-3} , \overset{1/8}{-1} , \overset{1/4}{0} , \overset{1/8}{1} , \overset{1/3}{3/2}\}\]

Note

\(\mathbf{X \sim Normal(0 , \sigma^2)}\)

\[M_X(\lambda) = e^{\lambda^2 \sigma^2 / 2}\]

Expectation Of MGF

\(E[e^{\lambda X}] = E[1 + \lambda X + \frac{\lambda^2}{2!}X^2 + \frac{\lambda ^3}{3!}X^3 + ....]\)

\(\implies 1 + \lambda E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda^3}{3!} E[X^3]\)

  • If \(\mathbf{X \sim \text{Normal}(0,\sigma^2) , M_X(\lambda) = e^{\lambda^2 \sigma^2 / 2}}\) \(1 + E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda ^3}{3!}E[X^3]\) \(\implies 1 + \frac{\lambda^2}{2!}\sigma^2 + \frac{\lambda^4}{4!}3\sigma^4\)

\(\implies E[X]=0 , E[X^2] = \sigma^2 , E[X^3] = 0 , E[X^4] = 3\sigma^4 ...\)

MGF of Sample Mean

Let \(X_1 , X_2 .... X_n \sim \text{iid }X , M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}\)

  • Sample Mean : \(\overline{X} = (X_1 + X_2 + ... X_n) / n\)
  • \(M_{X/n}(\lambda) = \frac{e^{\lambda / 2n} + e^{-\lambda / 2n}}{2}\)
\[M_{\overline{X}}(\lambda) = {\left(\frac{e^{\frac{\lambda}{2n}} + e^{\frac{\lambda}{2n}}}{2}\right)}^n\]

MGF convergence at \(\mathbf{1 / \sqrt{n}}\) scaling

Let \(X_1 , X_2 .... X_n \sim \text{iid }X , M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}\)

\(E[X]=0 , Var(X) = 1/4\)

Consider \(Y = (X_1 + X_2 ... + X_n) / \sqrt{n}\)

\(M_{X/\sqrt{n}}(\lambda) = \frac{e^{\lambda / 2\sqrt{n}} + e^{-\lambda / 2\sqrt{n}}}{2}\)

\[M_Y(\lambda) = M_{\overline{X}}(\lambda) = {\left(\frac{e^{\frac{\lambda}{2\sqrt{n}}} + e^{\frac{\lambda}{2\sqrt{n}}}}{2}\right)}^n\]

Using CLT to approximate probability

\[X_1 , X_2 , .... X_n \sim \overset{iid}{X}\]

Let \(\mu = E[X] , \sigma^2 = Var(X)\)

\(Y = X_1 + X_2 + .... X_n\)

What is \(P(Y - n\mu > \delta n \mu)\) ?

\[Z = \frac{Y - n\mu}{\sqrt{n} \sigma} \approx \text{Normal}(0,1)\]

\(P(Y-n \mu > \delta n \mu) = P(\frac{Y - n \mu}{\sqrt{n} \sigma} > \frac{\delta \sqrt{n} \mu}{\sigma}) \approx 1 - F(\frac{\delta \sqrt{n} \mu}{\sigma})\)

\(\begin{align*} F_{Z}(0.2617) = 0.603, F_{Z}(1.6) = 0.9452, F_{Z}(1.5) = 0.933 \end{align*}\)

Types of Distributions

Combination of Independent Normals

Let \(X_1 , X_2 ... X_n \sim \text{independent Normal}\)

Let \(X_i \sim \text{Normal}(\mu_i ,\sigma_{i}^{2})\)

Suppose \(Y = a_1X_1 + a_2X_2 + a_nX_n\) be a linear combination of independent normals.

Then,

\[Y \sim \text{Normal}(\mu , \sigma^2)\]

where \(\mu = E[Y] = a_1\mu_1 + a_2\mu_2 + ... + a_n\mu_n\)

\(\sigma^2 = a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2} + .... a_{n}^{2}\sigma_{n}^{2}\)

Therefore Linear combinations of independent normals is normal distribution.

Gamma Distribution

\(X \sim \text{Gamma}(\alpha , \beta)\) if PDF \(f_X(s) \propto x^{\alpha -1} e^{-\beta x} , x>0\)

Points to be noted

  • \(\alpha > 0\) and \(\alpha\) is called the shape parameter
  • \(\beta > 0\) and \(\beta\) is called the rate parameter
  • \(\theta = 1/ \beta\) and \(\theta\) is called the scale parameter.
  • Sum of n iid \(\text{Exp}(\beta)\) is \(\text{Gamma}(n, \beta)\)
  • Square of \(\text{Normal}(0 , \sigma^2)\) is \(\text{Gamma}(\frac{1}{2} , \frac{1}{2 \sigma^2})\)

Mean: \(\mathbf{\frac{\alpha}{\beta}}\) , Variance: \(\mathbf{\frac{\mathbf{\alpha}}{\beta^2}}\)

Cauchy Distribution

\(X \sim \text{Cauchy}(0, \alpha^2)\) if PDF \(f_X(x) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + (x - \theta)^2}\)

Note

  • \(\theta\) is the location parameter
  • \(\alpha > 0\) and \(\alpha\) is called the scale parameter
  • Suppose \(X , Y \sim \text{iid} Normal(0,\sigma^2)\). Then,
\[\frac{X}{Y} \sim \text{Cauchy}(0,1)\]

Mean : undefined , Variance : undefined

Beta Distribution

\(X \sim \text{Beta}(\alpha , \beta)\) if PDF \(f_X(x) \propto x^{\alpha -1}(1- x)^{\beta -1} , 0 < x < 1\)

Note

  • \(\alpha > 0 , \beta > 0\) and both of them are the shape parameters
  • \(\text{Beta}(\alpha ,1)\) has PDF \(\propto x^{\alpha -1}\) which is called the power function distribution
  • Suppose \(X \sim \text{Gamma}(\alpha , 1 / \theta), Y \sim \text{Gamma}(\beta , 1/\theta)\) , then
\[\frac{X}{X + Y} \sim \text{Beta}(\alpha , \beta)\]

Plotted Distributions

Sample Mean Distribution

\(X_1 , X_2 , .... X_n \sim \text{iid Normal}(\mu , \sigma^2)\)

\(\overline{X} = \frac{1}{n}X_1 + ... \frac{1}{n}X_n\)

Sample mean is a linear combination of iid normal random variables

\[\overline{X} \sim \text{Normal}(\mu , \sigma^2/n)\]

Mean : \(E[\overline{X}] = \mu\) , Variance : \(\text{Var}(\overline{X}) = \sigma^2 /n\)

Sum of squares of Normal Samples

\(X_1 , X_2 , .... X_n \sim \text{iid Normal}(0 , \sigma^2)\)

  • \(X_{i}^{2}\) : \(\text{Gamma}(1/2 , 1/2\sigma^2)\) , independent
  • Sum of n independent \(\text{Gamma}(\alpha , \beta)\) is \(\text{Gamma}(n\alpha , \beta)\)
\[X_{1}^{2} + X_{2}^{2} + X_{3}^{2} + ... + X_{n}^{2} \sim \text{Gamma}(\frac{n}{2} , \frac{1}{2\sigma^2})\]

Sample Mean and variance of normal samples

Suppose \(X_1 , X_2 , .... X_n \sim \text{iid Normal}(\mu , \sigma^2)\). Then,

  • \(\overline{X} \sim Normal(\mu , \sigma^2 /n)\)
  • \(\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^{2}\) , Chi-square with \(n-1\) degrees of freedom.
  • \(\overline{X}\text{ and }S^2\) are independent.