Central Limit Theorem
Moment Generating Functions
Let \(X\) be a zero-mean random variable. The MGF of \(X\) , denoted \(M_X(\lambda)\), is a function from \(\mathbb{R} \to \mathbb{R}\) defined as
Note
- When \(X\) is Discrete with PMF \(f_X\)
X takes the values \(\{x_1 , x_2 , x_3 ....\}\)
- When \(X\) is continuous with PDF \(f_X\) and support \(T_X\)
Example
\(\mathbf{X \in \{\overset{1/2}{-1} , \overset{1/4}{0} , \overset{1/4}{2}\}}\)
\(\newline\)
\(\mathbf{M_X(\lambda) = (1/3)e^{3 \lambda / 2} + (1/6)e^{-3\lambda} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/4}\)
Note
\(\mathbf{X \sim Normal(0 , \sigma^2)}\)
Expectation Of MGF
\(E[e^{\lambda X}] = E[1 + \lambda X + \frac{\lambda^2}{2!}X^2 + \frac{\lambda ^3}{3!}X^3 + ....]\)
\(\implies 1 + \lambda E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda^3}{3!} E[X^3]\)
- If \(\mathbf{X \sim \text{Normal}(0,\sigma^2) , M_X(\lambda) = e^{\lambda^2 \sigma^2 / 2}}\) \(1 + E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda ^3}{3!}E[X^3]\) \(\implies 1 + \frac{\lambda^2}{2!}\sigma^2 + \frac{\lambda^4}{4!}3\sigma^4\)
\(\implies E[X]=0 , E[X^2] = \sigma^2 , E[X^3] = 0 , E[X^4] = 3\sigma^4 ...\)
MGF of Sample Mean
Let \(X_1 , X_2 .... X_n \sim \text{iid }X , M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}\)
- Sample Mean : \(\overline{X} = (X_1 + X_2 + ... X_n) / n\)
- \(M_{X/n}(\lambda) = \frac{e^{\lambda / 2n} + e^{-\lambda / 2n}}{2}\)
MGF convergence at \(\mathbf{1 / \sqrt{n}}\) scaling
Let \(X_1 , X_2 .... X_n \sim \text{iid }X , M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}\)
\(E[X]=0 , Var(X) = 1/4\)
Consider \(Y = (X_1 + X_2 ... + X_n) / \sqrt{n}\)
\(M_{X/\sqrt{n}}(\lambda) = \frac{e^{\lambda / 2\sqrt{n}} + e^{-\lambda / 2\sqrt{n}}}{2}\)
Using CLT to approximate probability
Let \(\mu = E[X] , \sigma^2 = Var(X)\)
\(Y = X_1 + X_2 + .... X_n\)
What is \(P(Y - n\mu > \delta n \mu)\) ?
\(P(Y-n \mu > \delta n \mu) = P(\frac{Y - n \mu}{\sqrt{n} \sigma} > \frac{\delta \sqrt{n} \mu}{\sigma}) \approx 1 - F(\frac{\delta \sqrt{n} \mu}{\sigma})\)
\(\begin{align*} F_{Z}(0.2617) = 0.603, F_{Z}(1.6) = 0.9452, F_{Z}(1.5) = 0.933 \end{align*}\)
Types of Distributions
Combination of Independent Normals
Let \(X_1 , X_2 ... X_n \sim \text{independent Normal}\)
Let \(X_i \sim \text{Normal}(\mu_i ,\sigma_{i}^{2})\)
Suppose \(Y = a_1X_1 + a_2X_2 + a_nX_n\) be a linear combination of independent normals.
Then,
where \(\mu = E[Y] = a_1\mu_1 + a_2\mu_2 + ... + a_n\mu_n\)
\(\sigma^2 = a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2} + .... a_{n}^{2}\sigma_{n}^{2}\)
Therefore Linear combinations of independent normals is normal distribution.
Gamma Distribution
\(X \sim \text{Gamma}(\alpha , \beta)\) if PDF \(f_X(s) \propto x^{\alpha -1} e^{-\beta x} , x>0\)
Points to be noted
- \(\alpha > 0\) and \(\alpha\) is called the shape parameter
- \(\beta > 0\) and \(\beta\) is called the rate parameter
- \(\theta = 1/ \beta\) and \(\theta\) is called the scale parameter.
- Sum of n iid \(\text{Exp}(\beta)\) is \(\text{Gamma}(n, \beta)\)
- Square of \(\text{Normal}(0 , \sigma^2)\) is \(\text{Gamma}(\frac{1}{2} , \frac{1}{2 \sigma^2})\)
Mean: \(\mathbf{\frac{\alpha}{\beta}}\) , Variance: \(\mathbf{\frac{\mathbf{\alpha}}{\beta^2}}\)
Cauchy Distribution
\(X \sim \text{Cauchy}(0, \alpha^2)\) if PDF \(f_X(x) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + (x - \theta)^2}\)
Note
- \(\theta\) is the location parameter
- \(\alpha > 0\) and \(\alpha\) is called the scale parameter
- Suppose \(X , Y \sim \text{iid} Normal(0,\sigma^2)\). Then,
Mean : undefined , Variance : undefined
Beta Distribution
\(X \sim \text{Beta}(\alpha , \beta)\) if PDF \(f_X(x) \propto x^{\alpha -1}(1- x)^{\beta -1} , 0 < x < 1\)
Note
- \(\alpha > 0 , \beta > 0\) and both of them are the shape parameters
- \(\text{Beta}(\alpha ,1)\) has PDF \(\propto x^{\alpha -1}\) which is called the power function distribution
- Suppose \(X \sim \text{Gamma}(\alpha , 1 / \theta), Y \sim \text{Gamma}(\beta , 1/\theta)\) , then
Plotted Distributions
Sample Mean Distribution
\(X_1 , X_2 , .... X_n \sim \text{iid Normal}(\mu , \sigma^2)\)
\(\overline{X} = \frac{1}{n}X_1 + ... \frac{1}{n}X_n\)
Sample mean is a linear combination of iid normal random variables
Mean : \(E[\overline{X}] = \mu\) , Variance : \(\text{Var}(\overline{X}) = \sigma^2 /n\)
Sum of squares of Normal Samples
\(X_1 , X_2 , .... X_n \sim \text{iid Normal}(0 , \sigma^2)\)
- \(X_{i}^{2}\) : \(\text{Gamma}(1/2 , 1/2\sigma^2)\) , independent
- Sum of n independent \(\text{Gamma}(\alpha , \beta)\) is \(\text{Gamma}(n\alpha , \beta)\)
Sample Mean and variance of normal samples
Suppose \(X_1 , X_2 , .... X_n \sim \text{iid Normal}(\mu , \sigma^2)\). Then,
- \(\overline{X} \sim Normal(\mu , \sigma^2 /n)\)
- \(\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^{2}\) , Chi-square with \(n-1\) degrees of freedom.
- \(\overline{X}\text{ and }S^2\) are independent.