1) If the probability that Nidhi will earn $\ge 2,000$ on any particular day is $\frac{1}{4}$ and the probability that Nidhi will earn $\ge 1,500$ on the same day is $\frac{3}{4}$, what is the variance of the amount that Nidhi will earn on any particular day?

$$E[X] = 2000 \times \frac{1}{4} + 1500 \times \frac{3}{4}$$

$$\Rightarrow 1625$$

$$E[X^{2}] = (2000)^{2} \times \frac{1}{4} + (1500)^{2} \times \frac{3}{4}$$

$$\Rightarrow 4 \times 10^{6} + 675 \times 10^{4}$$

$$\Rightarrow 2687500$$

$$Vor(X) = E[X^{2}] - E[X]^{2}$$

$$\Rightarrow 2687500 - 1625^{2}$$

$$\Rightarrow 46875$$

2) If Var(3X+4)=144, what is the standard deviation of X?

$$Var(3x+4) = 144$$
 $\Rightarrow SD(x) = \sqrt{Var(x)}$
 $\Rightarrow q. Vor(x) = 144$ $\Rightarrow \sqrt{\frac{144}{9}}$
 $\Rightarrow Var(x) = 144/9$ $\Rightarrow \frac{12}{3} = \frac{4}{3}$

3) If X and Y are independent random variables such that ${\sf Var}(X) = {\sf Var}(Y) = 9$, find ${\sf Var}(X-Y)$.

$$Var(X - Y) = 1^2 \cdot Var(X) + (-1)^2 \cdot Var(Y)$$

 $Var(X) + Var(Y)$
 $Var(X) + Var(Y)$
 $Var(X) + Var(Y)$

4) The annual salary of a certain employee of a company is a random variable with an expected value of $\P600,000$ and a standard deviation of $\P40,000$. The employee invests 20% of the amount. Find the standard deviation of the amount invested by the employee.

5) Three fair coins are tossed. Find Var(X), where X is the number of tails that appear.

X= Number of tails

$$Var(x) = E[x]^2$$

$$\Rightarrow 2\frac{\pi}{8} - (\frac{12}{8})^2$$

The probability that an event A will occur is 0.60. Define

$$I = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occurs} \end{cases}$$

Find Var(I).

Similarly,

$$E[X^2] = 0.6$$

2) $Vor(X) = E[X^2] - E[X]^2$
 $0.6 - 0.36$
 0.29