Determinants
Video Link
Definition
- Every square matrix A has an associated number, called its determinant and denoted by \(\det(A)\) or \(|A|\).
It is used in :
- Solving systems of linear equations
- Finding the inverse of a matrix
- Calculus and More
Calculating Determinants
-
Determinant of a 1 x 1 matrix : \(\det(A) = a_{11}\)
-
Determinant of a 2 x 2 matrix :
- \(A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}\)
- \(det(A) = ad - bc\)
-
Determinant of a 3 x 3 matrix :
- \(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix}\)
- We will the get the determinant by using the first row.
- \(det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \\ \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{vmatrix}\)
- \(det(A) = a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})\)
Example
\(A = \begin{bmatrix} 2 & 4 & 1 \\ 3 & 8 & 7 \\ 5 & 6 & 9 \\ \end{bmatrix}\)
\(\begin{align} \det(A) &= 2 \begin{vmatrix} 8 & 7 \\ 6 & 9 \\ \end{vmatrix} - 4 \begin{vmatrix} 3 & 7 \\ 5 & 9 \\ \end{vmatrix} + 1 \begin{vmatrix} 3 & 8 \\ 5 & 6 \\ \end{vmatrix} \\ &= 2 (8 \times 9 - 7 \times 6) - 4 (3 \times 9 - 7 \times 5) + 1 (3 \times 6 - 8 \times 5) \\ &= 2 (72 - 42) - 4 (27 - 35) + 1 (18 - 40) \\ &= 2 (30) - 4 (-8) + 1 (-22) \\ &= 60 - (-32) + 22 \\ &= 94 \end{align}\)
Determinant of Identity Matrix
- Determinant of a 1 x 1 identity matrix : \(\det(I) = 1\)
- Determinant of a 2 x 2 identity matrix : \(\det(I) = (1 \times 1) - (0 \times 0) = 1\)
- Determinant of a 3 x 3 identity matrix : \(\det(I) = 1 \times 1 \times 1 - 0 \times 0 \times 0 = 1\)
Properties of Determinant
- Determinant of Product of Matrices : \(\det(AB) = \det(A) \times \det(B)\)
- Determinant of Inverse of Matrix : \(\det(A^{-1}) = \frac{1}{\det(A)}\)
- Switching Rows : \(\det(A') = -\det(A)\) ( \(A'\) is the new matrix with switched rows.)
- Switching Columns : \(\det(A') = -det(A)\) (\(A'\) is the new matrix with switched columns.)
-
Adding multiples of rows: (Same proof for multiple of columns)
- \(A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}\)
-
\(A' = \begin{bmatrix} a + tc & b + td \\ c & d \\ \end{bmatrix}\)
\(\begin{align} \det(A') &= (a + tc)(d) - (b + td)(c) \\ &= ad + tcd - bc - tcd \\ &= ad - bc \\ &= \det(A) \\ \end{align}\)
-
Scalar multiplication of a row/column of matrix \(A\) with a constant \(t\) : \(det(A') = t \cdot det(A)\)
Minors
- Minor of a matrix is the determinant of a submatrix obtained by deleting a row and a column from the matrix.
- Minors are denoted by \(M_{ij}\).
Example
\(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix}\)
\(M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{vmatrix}\)
\(M_{11} = a_{22}a_{33} - a_{23}a_{32}\)
Cofactors
- Cofactor of a matrix is the determinant of a submatrix obtained by deleting a row and a column from the matrix.
-
Cofactors are used to calculate the inverse of a matrix.
-
We can use Minors and Cofactors to calculate the determinant of a matrix.
Formula
Expansion along any row or column
More Properties of Determinants
- \(\det(A^n) = \det(A)^n\)
- \(\det(A^{-1}) = \frac{1}{\det(A)}\)
- \(\det(P^{-1}AP) = \det(A)\)
- \(\det(AB) = \det(BA)\)
- \(\det(A^T) = \det(A)\)
- \(\det(tA_{n\times n}) = t^n \cdot \det(A)\)
Tips for Calculating Determinant
- The determinant of a matrix with a row or column of zeros is \(0\).
- The determinant of a matrix in which one row (or column) is a linear combination of other rows (resp. columns) is \(0\).
- Scalar multiplication of a row by a constant t multiplies the determinant by \(t\).
- While computing the determinant, you can choose to compute it using expansion along a suitable row or column.